RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci.
نویسندگان
چکیده
In response to DNA double-strand breaks (DSBs), BRCA1 forms biochemically distinct complexes with certain other DNA damage response proteins. These structures, some of which are required for homologous recombination (HR)-type DSB repair, concentrate at distinct nuclear foci that demarcate sites of genome breakage. Polyubiquitin binding by one of these structures, the RAP80/BRCA1 complex, is required for efficient BRCA1 focal recruitment, but the relationship of this process to the execution of HR has been unclear. We found that this complex actively suppresses otherwise exaggerated, BRCA1-driven HR. By controlling the kinetics by which other BRCA1-interacting proteins that promote HR concentrate together with BRCA1 in nuclear foci, RAP80/BRCA1 complexes suppress excessive DSB end processing, HR-type DSB repair, and overt chromosomal instability. Since chromosomal instability emerges when BRCA1 HR function is either unbridled or absent, active tuning of BRCA1 activity, executed in nuclear foci, is important to genome integrity maintenance.
منابع مشابه
The ubiquitin-interacting motif containing protein RAP80 interacts with BRCA1 and functions in DNA damage repair response.
In this study, we examine the potential role of receptor-associated protein 80 (RAP80), a nuclear protein containing two ubiquitin-interacting motifs (UIM), in DNA damage response and double-strand break (DSB) repair. We show that following ionizing radiation and treatment with DNA-damaging agents, RAP80 translocates to discrete nuclear foci that colocalize with those of gamma-H2AX. The UIMs an...
متن کاملCo-operation of BRCA1 and POH1 relieves the barriers posed by 53BP1 and RAP80 to resection
In G2 phase cells, DNA double-strand break repair switches from DNA non-homologous end-joining to homologous recombination. This switch demands the promotion of resection. We examine the changes in 53BP1 and RAP80 ionizing radiation induced foci (IRIF) in G2 phase, as these are factors that restrict resection. We observed a 2-fold increase in the volume of 53BP1 foci by 8 h, which is not seen i...
متن کاملBRCA1 promotes induction of ssDNA by ionizing radiation.
The BRCA1 tumor suppressor contributes to the repair of DNA double-strand breaks (DSB) through homologous recombination, but the mechanism is unknown. The rapid accumulation of BRCA1 into nuclear foci in response to induction of DNA breaks suggests that BRCA1 may function in an early step in the repair pathway. We examined the role of BRCA1 in one such early step, the resection of DSBs to gener...
متن کاملRAP80 responds to DNA damage induced by both ionizing radiation and UV irradiation and is phosphorylated at Ser 205.
Receptor-associated protein (RAP80), a nuclear protein containing two ubiquitin-interacting motifs (UIM), was recently found to be associated with breast cancer-1 (BRCA1) and to translocate to ionizing radiation-induced foci (IRIF). In this study, we show that the BRCT mutant of BRCA1, R1699W, which is associated with increased risk of breast cancer, is unable to interact with RAP80. Previously...
متن کاملBRCA2 is required for ionizing radiation-induced assembly of Rad51 complex in vivo.
Mutations in BRCA1 and BRCA2 account for the majority of familial breast cancers. Cells with mutated BRCA1 or BRCA2 are hypersensitive to ionizing radiation (IR) and exhibit defective DNA repair. Both BRCA1 and BRCA2 have been reported to bind Rad51, a protein essential for homologous recombination and the recombinational repair of DNA double-strand breaks. In normal cells, a redistribution of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 25 7 شماره
صفحات -
تاریخ انتشار 2011